Copied to
clipboard

G = C42.58D4order 128 = 27

40th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.58D4, (C4×D4)⋊5C4, (C4×Q8)⋊5C4, C4.4D49C4, C42.C25C4, C428C41C2, C42.75(C2×C4), C23.502(C2×D4), (C22×C4).214D4, C42.6C431C2, C22.SD16.6C2, C23.31D421C2, C4⋊D4.137C22, C22⋊C8.133C22, C22.16(C8⋊C22), (C22×C4).634C23, (C2×C42).178C22, C22⋊Q8.142C22, C22.12(C8.C22), C2.C42.2C22, C2.17(C42⋊C22), C2.10(C23.36D4), C23.36C23.7C2, C2.18(C23.C23), C4⋊C4.12(C2×C4), (C2×D4).10(C2×C4), (C2×Q8).10(C2×C4), (C2×C4).1158(C2×D4), (C2×C4).92(C22⋊C4), (C2×C4).124(C22×C4), C22.188(C2×C22⋊C4), SmallGroup(128,244)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.58D4
C1C2C22C23C22×C4C2×C42C23.36C23 — C42.58D4
C1C22C2×C4 — C42.58D4
C1C22C2×C42 — C42.58D4
C1C2C22C22×C4 — C42.58D4

Generators and relations for C42.58D4
 G = < a,b,c,d | a4=b4=c4=1, d2=b-1, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b, bd=db, dcd-1=b-1c-1 >

Subgroups: 244 in 111 conjugacy classes, 44 normal (36 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2.C42, C2.C42, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C22.SD16, C23.31D4, C428C4, C42.6C4, C23.36C23, C42.58D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C8⋊C22, C8.C22, C23.C23, C23.36D4, C42⋊C22, C42.58D4

Character table of C42.58D4

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O8A8B8C8D
 size 11112282222444488888888888
ρ111111111111111111111111111    trivial
ρ2111111-11-11-1-1-1-11-1-1111-11-1-111    linear of order 2
ρ3111111111111111-1-1-1-1111-1-1-1-1    linear of order 2
ρ4111111-11-11-1-1-1-1111-1-11-1111-1-1    linear of order 2
ρ511111111-11-1-1-1-11-1-111-11-111-1-1    linear of order 2
ρ6111111-1111111111111-1-1-1-1-1-1-1    linear of order 2
ρ711111111-11-1-1-1-1111-1-1-11-1-1-111    linear of order 2
ρ8111111-111111111-1-1-1-1-1-1-11111    linear of order 2
ρ91111-1-11-1-1-1-11-111i-ii-i-1-11-ii-ii    linear of order 4
ρ101111-1-1-1-11-11-11-11-iii-i-111i-i-ii    linear of order 4
ρ111111-1-11-11-11-11-11i-i-ii1-1-1i-i-ii    linear of order 4
ρ121111-1-1-1-1-1-1-11-111-ii-ii11-1-ii-ii    linear of order 4
ρ131111-1-11-11-11-11-11-iii-i1-1-1-iii-i    linear of order 4
ρ141111-1-1-1-1-1-1-11-111i-ii-i11-1i-ii-i    linear of order 4
ρ151111-1-11-1-1-1-11-111-ii-ii-1-11i-ii-i    linear of order 4
ρ161111-1-1-1-11-11-11-11i-i-ii-111-iii-i    linear of order 4
ρ172222-2-202222-2-22-200000000000    orthogonal lifted from D4
ρ182222220-22-222-2-2-200000000000    orthogonal lifted from D4
ρ192222-2-202-22-222-2-200000000000    orthogonal lifted from D4
ρ202222220-2-2-2-2-222-200000000000    orthogonal lifted from D4
ρ214-4-444-400000000000000000000    orthogonal lifted from C8⋊C22
ρ224-4-44-4400000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2344-4-400004i0-4i000000000000000    complex lifted from C23.C23
ρ244-44-4000-4i04i0000000000000000    complex lifted from C42⋊C22
ρ254-44-40004i0-4i0000000000000000    complex lifted from C42⋊C22
ρ2644-4-40000-4i04i000000000000000    complex lifted from C23.C23

Smallest permutation representation of C42.58D4
On 32 points
Generators in S32
(1 29 11 22)(2 26 12 19)(3 31 13 24)(4 28 14 21)(5 25 15 18)(6 30 16 23)(7 27 9 20)(8 32 10 17)
(1 7 5 3)(2 8 6 4)(9 15 13 11)(10 16 14 12)(17 23 21 19)(18 24 22 20)(25 31 29 27)(26 32 30 28)
(2 14 16 8)(3 13)(4 6 10 12)(7 9)(17 23 28 26)(18 22)(19 32 30 21)(20 31)(24 27)(25 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,29,11,22)(2,26,12,19)(3,31,13,24)(4,28,14,21)(5,25,15,18)(6,30,16,23)(7,27,9,20)(8,32,10,17), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28), (2,14,16,8)(3,13)(4,6,10,12)(7,9)(17,23,28,26)(18,22)(19,32,30,21)(20,31)(24,27)(25,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;

G:=Group( (1,29,11,22)(2,26,12,19)(3,31,13,24)(4,28,14,21)(5,25,15,18)(6,30,16,23)(7,27,9,20)(8,32,10,17), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28), (2,14,16,8)(3,13)(4,6,10,12)(7,9)(17,23,28,26)(18,22)(19,32,30,21)(20,31)(24,27)(25,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,29,11,22),(2,26,12,19),(3,31,13,24),(4,28,14,21),(5,25,15,18),(6,30,16,23),(7,27,9,20),(8,32,10,17)], [(1,7,5,3),(2,8,6,4),(9,15,13,11),(10,16,14,12),(17,23,21,19),(18,24,22,20),(25,31,29,27),(26,32,30,28)], [(2,14,16,8),(3,13),(4,6,10,12),(7,9),(17,23,28,26),(18,22),(19,32,30,21),(20,31),(24,27),(25,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])

Matrix representation of C42.58D4 in GL8(𝔽17)

115000000
016000000
001150000
000160000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
0000151600
000000160
00000021
,
10000000
116000000
001300000
001340000
00001100
000001600
00000011
0000001516
,
001300000
001340000
10000000
116000000
00000011
0000001516
00001100
000001600

G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,15,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,2,0,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,13,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,0,0,1,15,0,0,0,0,0,0,1,16],[0,0,1,1,0,0,0,0,0,0,0,16,0,0,0,0,13,13,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,16,0,0,0,0,1,15,0,0,0,0,0,0,1,16,0,0] >;

C42.58D4 in GAP, Magma, Sage, TeX

C_4^2._{58}D_4
% in TeX

G:=Group("C4^2.58D4");
// GroupNames label

G:=SmallGroup(128,244);
// by ID

G=gap.SmallGroup(128,244);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1430,184,1123,1018,248,1971]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^-1,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=b^-1*c^-1>;
// generators/relations

Export

Character table of C42.58D4 in TeX

׿
×
𝔽